2変数の積分−重積分
初めに(20210619)
当サイトを参考にしてサイト作成・運営している方へお願い
バックリンクをお願いいたします。
形としては次のようになります。
の意味
は
座標系で表現したときの微小面積になります。
ただしこの微小面積は座標系によって異なります。
座標系に依存しない形ではと書き、先ほどのデカルト表現においては
です。
ここでこのを図で考えてみましょう。
座標系がのとき、
点
を考える。
すべての変数を
ずらす。
この時すべてのずらし方を考えます。
すべての経路によって囲まれた部分の面積が面積要素
になります。
- デカルトでの
- 極座標での
極座標における微小面積
の求め方
求められた上記の式において、第一項が微少量の2次、第二項が微少量の3次になります。
とりあえず、この場面においては上記の微少量の3次はキャンセルできるとしましょう。そうすると極座標における微小面積

重積分関連ページ
- 導関数
- 基本的に当サイトでは数学の苦手な方でも理解できることを目的としているので(証明のない数学などはありませんが)わかりづらい表記や説明はなるべく避け、あくまで道具としての数学を習得させることなどを目標としています。内容は慣性モーメントに関する部分だけでなく、最初のほうには慣性モーメントの計算において使用する微分積分に関する簡単な知識、二重積分および三重積分などの重積分法による面積および体積の導出などをこのカテゴリーに収めてあります。復習だとおもって軽く読み飛ばしてみてください。
- 偏微分
- 基本的に当サイトでは数学の苦手な方でも理解できることを目的としているので(証明のない数学などはありませんが)わかりづらい表記や説明はなるべく避け、あくまで道具としての数学を習得させることなどを目標としています。内容は慣性モーメントに関する部分だけでなく、最初のほうには慣性モーメントの計算において使用する微分積分に関する簡単な知識、二重積分および三重積分などの重積分法による面積および体積の導出などをこのカテゴリーに収めてあります。復習だとおもって軽く読み飛ばしてみてください。
- 一変数関数の積分
- 基本的に当サイトでは数学の苦手な方でも理解できることを目的としているので(証明のない数学などはありませんが)わかりづらい表記や説明はなるべく避け、あくまで道具としての数学を習得させることなどを目標としています。内容は慣性モーメントに関する部分だけでなく、最初のほうには慣性モーメントの計算において使用する微分積分に関する簡単な知識、二重積分および三重積分などの重積分法による面積および体積の導出などをこのカテゴリーに収めてあります。復習だとおもって軽く読み飛ばしてみてください。
- 2重積分
- 慣性モーメントとは、簡単に説明すれば物体(剛体)の回転のしづらさ、回りだす変化のしにくさを示す物体の物理的な特性のことだと考えることができるでしょう。またさらに別の言い方をすれば回転の方程式といえるかもしれません。このサイトは主にこの慣性モーメントの導出の仕方と計算法を中心に解説した内容になっています。
- 2重積分例題
- 基本的に当サイトでは数学の苦手な方でも理解できることを目的としているので(証明のない数学などはありませんが)わかりづらい表記や説明はなるべく避け、あくまで道具としての数学を習得させることなどを目標としています。内容は慣性モーメントに関する部分だけでなく、最初のほうには慣性モーメントの計算において使用する微分積分に関する簡単な知識、二重積分および三重積分などの重積分法による面積および体積の導出などをこのカテゴリーに収めてあります。復習だとおもって軽く読み飛ばしてみてください。