よくわかる慣性モーメント

当サイトを参考にしてサイト及び動画(youtube)作成・運営している者へ。

社会人として最低限のルールとマナーは守れ

近年、当ドメインコンテンツの明らかな盗用と思われるサイト・動画が一部散見されます。 参考にしたのであれば紹介リンクなどの注釈を入れるといった対応は必ずお願いします。

第0章―慣性モーメントの概念

AKJP Prompt

Want to know more about other matters ? Learn more about knowledge and truth can mitigate burden of mind. Then click here.

Linear Algebra

Linear algebra is ubiquitous in theoretical physics for those involved in modern science. It is learned in elementary mathematics.

Vector Analysis

Vector analysis is physical mathematics using space vectors and is an extremely important theoretical concept utilized in various fields of modern physics.

Differential Equations

A differential equation is an equation that relates one or more unknown functions and their derivatives.

回転運動のエネルギー

ある剛体(物体の任意の2点間の距離が変化しないもの)の運動エネルギーは、

と表され、角速度、つまりと置けば、

さらに剛体の角運動量(運動量のモーメント)をとすれば、

極座標表現により次に示す値、

これらを上記の運動量モーメントに代入すれば、

と表現できることになります。

ここで上記の式においてと置けば次のような結果を得ます。

以上に示された記号“”は、回転軸が決まるとその値が決まります。
このを回転軸まわりの慣性モーメントといいます。
またさらに先ほどの運動エネルギーを考慮すると、であること、及び(すべての質点に共通)であるので以下の結果が導かれます。

慣性モーメントの求め方

次に実際のを求める計算として、まず剛体中の微小部分を考えましょう。

  • と回転軸までの距離

  • 剛体の密度

この微小部分の慣性モーメントの計算は、

より次のようになります。

このを剛体全体にわたって足しあげれば慣性モーメントは次のようにもとまります。

これらの結果により慣性モーメントとは、簡単に説明すれば物体(剛体)の回転のしづらさ、回りだす変化のしにくさを示す物体の物理的な特性のことだと考えることができるでしょう。

またさらに別の言い方をすれば回転の方程式といえるかもしれません。

慣性モーメント導出の簡単な例

ex.円盤の対象軸周りに関する慣性モーメントの場合

回転軸が円盤の中心を通り円盤と平行な場合の慣性モーメントの計算過程

図のような円盤を考えます。

円盤の質量を質量M、半径をRとします。

この場合、後述しますがデカルト座標のカーテシャン座標系dxdyではなく平面極座標を適用しますので微小面積は微小面積要素rdrdθとなります。

さらにこの場合軸からの距離は、

これらによりは、

これらを積分によって全体をたし上げます。

よって円盤面内の重心を通る軸に関する慣性モーメントは、以下のようになります。

このサイトは主にこの慣性モーメントの導出の仕方と計算法を中心に解説した内容になっています。

このサイトの趣旨

  • おもに大学初年度の物理学科の学生を対称としていますが社会人や高校生などの一般の方に対しても微分積分の簡単な説明もあるのであまり無理なく読み進めることが出来るかと思います。

  • もともと他のサイトに入れる予定だったものなのですが容量があまりに大きくなってしまい、この調子だと力学なのかそれとも慣性モーメントのサイトなのかわからなくなってしまいそうだったのであえて領域を分けた次第です。それ以外の理由としては他で運営しているサイトのアクセス解析をざっと見渡してみたところどういうわけか半分以上の訪問者の方が慣性モーメントか、あるいはそれに関連するキーワードの検索によって入ってきているという非常に意外なデータがでていること、さらには個人的に不満におもっていたことの理由として現在(2006年の時点)市販されている力学テキストには一般的にありきたりな物(棒、円盤、球などの剛体における対称軸のみの計算)に関する説明のみであることや、またはシスティマティックな計算法を説明した参考書をあまり見たことがなかったものですので今回あえて自分で作ったノートを参考にちょっとだけ教科書風に記述を加えたものをアップロードした次第です。

  • 基本的に当サイトでは数学の苦手な方でも理解できることを目的としているので(証明のない数学などはありませんが)わかりづらい表記や説明はなるべく避け、あくまで道具としての数学を習得させることなども目標としています。 内容は慣性モーメントに関する部分だけでなく、最初のほうには慣性モーメントの計算において使用する微分積分に関する簡単な知識、二重積分および三重積分などの重積分法による面積および体積の導出や、平面極座標、極座標、円柱座標におけるヤコビアン(関数行列式)の導出法、さらには力学にちなんだ知識と剛体の重心に関する導出法、またくりぬいた円盤の慣性モーメントや、円錐の頂点、底面の中心点を通る法線面と平行な軸周り、さらには円錐の重心周りの慣性モーメントを求める際に必要になる知識である平行軸の定理などの内容も付け足しておきました。 ページの進め方は上部ヘッダープルダウンより各カテゴリが選択できるようになっており基本的に上から順に読み進めていく感じになります。またヘッダーカテゴリーの微分積分、ヤコビアン…といった部分は慣性モーメントを理解する上での前提条件的な内容でありそこはほぼ蛇足ですので、必要ないという方はヘッダーメニューの“慣性モーメント計算”のほうから閲覧していってください。ちなみにヤコビアン(関数行列式)の導出における行列式の解法は一般的にはサラスを使いますが当サイトにおいては行列式展開法という手法を提示してあります。この計算式の手順に関しては、リンクしてある姉妹サイト“よくわかるベクトル解析”、または“線形代数”のほうを参照なさってください。

お知らせ

  • 2024/05/18 SELinuxに対応しました
  • 2024/05/17 VPSへマイグレーションしました
  • 2023/12/23 円錐の底面、頂点、重心周りの慣性モーメントコンテンツ追加しました
  • 2006年より運用開始

数学ランキング 物理学ランキング にほんブログ村 科学ブログ 物理学へ にほんブログ村 科学ブログ 数学へ にほんブログ村 科学ブログへ PVアクセスランキング にほんブログ村


お知らせ


ある座標系から別の座標系へ移動させるとき、そのスケール変換量としてヤコビアンというものがあります。ここではそのヤコビアンを使って微小面積要素の計算を実際に行っていきます。


PAGE TOP