円盤の慣性モーメント①
円盤の慣性モーメントその①
円盤の対称軸に関する慣性モーメントの計算
半径、質量がの円盤を考えます。
この円盤の中心を通りその円盤に垂直な軸の周りの慣性モーメントを求めてみましょう。
平面極座標による座標変換
まず座標系は2次元の平面極座標として捉えます。
このときの微小部分の面積はヤコビアンの計算により、
さらに全質量が、面積がであるので円盤の密度は、
よって微小部分の質量は、
軸からの距離、
これらの結果によりは次のようになります。
積分によってたし上げます。
よって円盤の慣性モーメントは次のようになります。
円盤と平行な回転軸の慣性モーメントの計算
回転軸が円盤の中心を通り、その円盤と平行な場合の回転軸における慣性モーメントの計算をしていきます。
円盤の質量を、半径をとします。
先ほどと同じように微小面積は、
さらにこの場合軸からの距離は、
またはでもかまいません。
これらによりは、
これを積分によって足し上げます。
よって円盤面内の軸に関する慣性モーメントは、
長形板慣性モーメント
長方形板の慣性モーメントの導出過程 ━ 辺の長さがそれぞれ2a,2bの厚さを考えない長方形板の重心を通る対称軸に関する慣性モーメントの計算
直方体慣性モーメント
直方体の慣性モーメントの導出過程 ━ それぞれの辺の長さを2a、2b、2cとした場合の直方体の重心を通る軸に関する慣性モーメントの計算
棒の慣性モーメント①
棒の対称軸に関しての慣性モーメントの導出過程 ━ 長さ2aの棒の中点を通り棒に垂直な軸に関する慣性モーメントの導出計算過程
棒の慣性モーメント②
棒の慣性モーメントその②の導出過程 ━ 長さ2aの細長い棒の中点を通り棒とαの角をなす直線に関する慣性モーメントの導出過程
円盤の慣性モーメント①
円盤の対称軸に関する慣性モーメントの計算 ━ 半径、質量がの円盤を考えます。この円盤の中心を通りその円盤に垂直な軸の周りの慣性モーメント
円盤の慣性モーメント②
円盤の慣性モーメントその② ━ 円盤の中心を通り、円盤の法線面上の垂直線とαの角をなす直線に関する慣性モーメントを求めます。
中空円盤の慣性モーメント
中空円盤の慣性モーメントの導出過程 ━ 中空円盤の内半径をa、外半径をbとします。こうしたときの中空円盤の慣性モーメントを求めていきます。
円錐の慣性モーメント
円錐の慣性モーメント ━ ある質点間の距離が変化しない円錐の頂点と、底面の中心を通るZ軸周りの慣性モーメントを求めていきます。
球の慣性モーメント
球の慣性モーメントの計算 ━ 球の中心部分となる重心点を通る軸に関する慣性モーメント。考える球体の質量はM、半径はRの均一な球体とします。
円輪の慣性モーメント
円輪の中心を通る対称軸に関する慣性モーメントの計算。極座標系を取り質量はM、半径はa、円周は2πnとしたときのx,y,z軸周りの慣性モーメント
球殻の慣性モーメント
一様密度で質量M、外径b、内半径aの球殻の中心を通る慣性モーメントの厚さがある場合と厚さを無視できる場合の慣性モーメントを考察していきます。
円柱の慣性モーメント
円柱の重心を通る対称軸に関する慣性モーメントの計算 ━ 半径がa、高さがlで質量がMとする円柱のxyz軸におけるそれぞれの慣性モーメント。
中空円筒の慣性モーメント
中空円筒の重心を通る軸に関する慣性モーメントの計算 ━ 一様密度で質量がM、半径がa、長さをlとし、円筒の外側の厚さは無視できるものとします。
半球体の慣性モーメント
半球体の重心を通る軸に関する慣性モーメントの導出 ━ 質量がM、半径がaの半球体の重心周りに関する慣性モーメントの計算過程。
くり抜円盤慣性モーメント
くり抜かれた円盤の慣性モーメントに関して、平行軸の定理を利用して目的とする円盤の慣性モーメントの導出に関して詳しく解説していきます。
円錐の慣性モーメント-2
円錐の頂点周り、円錐底面に平行で中心点を通る軸周りの慣性モーメント、さらには円錐の重心回りの慣性モーメントについて考察していきます。